Geometric optimization via composite majorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Optimization by Nonconvex Majorization-Minimization

Many tasks in imaging can be modeled via the minimization of a nonconvex composite function. A popular class of algorithms for solving such problems are majorizationminimization techniques which iteratively approximate the composite nonconvex function by a majorizing function that is easy to minimize. Most techniques, e.g. gradient descent, utilize convex majorizers in order guarantee that the ...

متن کامل

Digital Circuit Optimization via Geometric Programming

This paper concerns a method for digital circuit optimization based on formulating the problem as a geometric program (GP) or generalized geometric program (GGP), which can be transformed to a convex optimization problem and then very efficiently solved. We start with a basic gate scaling problem, with delay modeled as a simple resistor-capacitor (RC) time constant, and then add various layers ...

متن کامل

Bayesian Nonlinear Filtering via Information Geometric Optimization

In this paper, Bayesian nonlinear filtering is considered from the viewpoint of information geometry and a novel filtering method is proposed based on information geometric optimization. Under the Bayesian filtering framework, we derive a relationship between the nonlinear characteristics of filtering and the metric tensor of the corresponding statistical manifold. Bayesian joint distributions ...

متن کامل

Undersampled Phase Retrieval via Majorization-Minimization

In the undersampled phase retrieval problem, the goal is to recover an N -dimensional complex signal x from only M < N noisy intensity measurements without phase information. This problem has drawn a lot of attention to reduce the number of required measurements since a recent theory established that M ≈ 4N intensity measurements are necessary and sufficient to recover a generic signal x. In th...

متن کامل

Optimization and Majorization of Invariant Measures

The set of ×2-invariant measures can be equipped with the partial order of majorization, describing relative dispersion. The minimal elements for this order are precisely the Sturmian measures of Morse and Hedlund. This yields new characterisations of Sturmian measures, and has applications to the ergodic optimization of convex functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Graphics

سال: 2017

ISSN: 0730-0301,1557-7368

DOI: 10.1145/3072959.3073618